Stanford University

Z/2 harmonic differential forms and SI(2;C)-like gauge theories II

Bldg 380 Room 383N
Wednesday, January 29, 2020 3:15 PM
Professor Cliff Taubes (Harvard University)

Z/2 harmonic forms are closed and coclosed 1-forms with values in a real line bundle that is defined on the complement of a cxdimension 2 subvariety of a Riemannian manifold with their norms being zero on the same subvariety. These objects are now known to appear (in dimensions 2-4) in diverse contests involving SL (2,C) gauge theories. I hope to tell you a story about these objects and the role that they might be playing with regards to the differential topology of low dimensional manifolds.

You can learn more about Professor Cliff Taubes at http://people.math.harvard.edu/people/TaubesCliff.html